20,936 research outputs found

    Open-Category Classification by Adversarial Sample Generation

    Full text link
    In real-world classification tasks, it is difficult to collect training samples from all possible categories of the environment. Therefore, when an instance of an unseen class appears in the prediction stage, a robust classifier should be able to tell that it is from an unseen class, instead of classifying it to be any known category. In this paper, adopting the idea of adversarial learning, we propose the ASG framework for open-category classification. ASG generates positive and negative samples of seen categories in the unsupervised manner via an adversarial learning strategy. With the generated samples, ASG then learns to tell seen from unseen in the supervised manner. Experiments performed on several datasets show the effectiveness of ASG.Comment: Published in IJCAI 201

    GPSP: Graph Partition and Space Projection based Approach for Heterogeneous Network Embedding

    Full text link
    In this paper, we propose GPSP, a novel Graph Partition and Space Projection based approach, to learn the representation of a heterogeneous network that consists of multiple types of nodes and links. Concretely, we first partition the heterogeneous network into homogeneous and bipartite subnetworks. Then, the projective relations hidden in bipartite subnetworks are extracted by learning the projective embedding vectors. Finally, we concatenate the projective vectors from bipartite subnetworks with the ones learned from homogeneous subnetworks to form the final representation of the heterogeneous network. Extensive experiments are conducted on a real-life dataset. The results demonstrate that GPSP outperforms the state-of-the-art baselines in two key network mining tasks: node classification and clustering.Comment: WWW 2018 Poste

    A novel multipath-transmission supported software defined wireless network architecture

    Get PDF
    The inflexible management and operation of today\u27s wireless access networks cannot meet the increasingly growing specific requirements, such as high mobility and throughput, service differentiation, and high-level programmability. In this paper, we put forward a novel multipath-transmission supported software-defined wireless network architecture (MP-SDWN), with the aim of achieving seamless handover, throughput enhancement, and flow-level wireless transmission control as well as programmable interfaces. In particular, this research addresses the following issues: 1) for high mobility and throughput, multi-connection virtual access point is proposed to enable multiple transmission paths simultaneously over a set of access points for users and 2) wireless flow transmission rules and programmable interfaces are implemented into mac80211 subsystem to enable service differentiation and flow-level wireless transmission control. Moreover, the efficiency and flexibility of MP-SDWN are demonstrated in the performance evaluations conducted on a 802.11 based-testbed, and the experimental results show that compared to regular WiFi, our proposed MP-SDWN architecture achieves seamless handover and multifold throughput improvement, and supports flow-level wireless transmission control for different applications

    Development of parametric eco-driving models for fuel savings: A novel parameter calibration approach

    Get PDF
    The existing conventional traffic flow models aims to simulate human-driven following vehicles in real world. In this era of emerging transport solutions, controlling or intervening traffic flow to achieve high fuel efficiency along with good driving safety and travel efficiency becomes a reality. As such, it is worth exploring the possibility of developing eco-driving models to optimise vehicle movements for fuel consumption minimisation, while maintaining safety and efficiency. In this study, we propose a modified genetic algorithm (GA) based calibration method that enables the calibrated parametric traffic flow (car following) models to simulate or control vehicles in an eco-driving manner. By developing a novel objective function for the GA method based on the widely-used VT-Micro fuel consumption model, the proposed method can calibrate model parameters towards improving fuel efficiency. Besides, by subtly using heavy fuel consumptions as a surrogate index to represent low travel efficiency or dangerous driving strategies, the modified GA method with the novel objective function can guide the calibrated model towards achieving complete eco-driving requirements. Experimental simulation results further indicate that traffic flow models calibrated by the modified GA-based method can also alleviate traffic disturbances and oscillations in a more effective manner
    corecore